Potential analysis of a semi-active antiroll bar based on MR technology

Tobias Tarne | Senior engineer vehicle dynamics – ADAS/AD

June 2024

M dynamiX

Different technologies of anti-roll bars

There are three different solutions of implementing anti-roll bars

Source: https://newsroom.porsche.com/de/produkte/taycan/f ahrwerk-18537.html

Passive system

Development

Source: https://www.audi-mediacenter.com/de/audi-

technik-lexikon-7180/fahrwerk-7185

M dynamiX

Semi-active system

Active system

2

7/25/2024

Pros and cons of the different solutions

Development

rus

M dynamiX

Passive system	Semi-active system	Active system
	PROs	
 Minimal weight 	 Increased driving 	 Increased driving
 Compact design 	comfort	comfort
 Low cost 	 Improved vehicle 	 Improved vehicle dynamics
 Simple design 	dynamics	
	 Low power consumption 	 Advanced driving functions
	 Medium cost intensive 	
CONs		
 Limited comfort potential 	 No active torque 	 Power consumption
	 Technology not proven 	 Design space
 Not adjustable 		 Cost intensive

What is a magnetorheological fluid?

- Mixture of a base oil and magnetizing iron particles
- Building a chain formation in a magnetic field
- The higher the applied field, the bigger the chain formation

Semi-active system by Inventus

- Cut anti-roll bar
- Idle state without current applied
- Fail-safe design
- Consists of:
 - Actuator unit containing the MRF
 - Planetary gearbox
 - Rotary encoder
 - Controller unit

Test vehicle setup

Laser front

Test vehicle setup

Development

M dynamiX

Max. RollAngle [deg]

9

TUS

Development

M dynamiX

RollAngle Gradient [$deg/(m/s^2)$]

ENTUS

Development

M dynamiX

Potential analysis of a semi-active anti-roll bar based on MR technology Chassis.tech 7/25/2024 11

M dynamiX

Development

Understeer Gradient [$deg/(m/s^2)$]

Weave test – ISO 13674-1:2016

Weave test - ISO 13674-1:2016

Max. RollAngle [deg]

Weave test – ISO 13674-1:2016

Development

RollAngle Hysteresis [*deg*]

Conclusion

Designed to match the torsional stiffness of traditional passive systems

Refined balance between comfort and stability

Outperforming the passive system

Exhibited tendency of active systems with less power consumption

Viable, cost-effective, bridging the gap between passive and active

